Outils logiciels pour les cours Paris II

Cours Paris II

edit SideBar

DU Droit Du Numérique

  • Data Science
    • Introduction to Data Science. The classical world and the new world of bigdata (4 Vs: Volume, Velocity, Veracity, Variety). Business Intelligence in the classical world. Reading and writing on a server, Databases in the cloud (Mysql), Olap queries (Jpivot) on a Datawarehouse. Data Mining and predictions. Applications with http://www.up2.fr/M1
    • Example of bigdata: Social Networks (Twitter account and Developper's account needed-see http://www.up2.fr (Flux Twitter), Gephi). Social graphs, degree distribution, Pagerank, Modules and Clusters. Visualisation of communities. Challenge: correlation of various streams and datawarehouses.
    • References
    1. Business Intelligence
    2. Bigdata
    3. Networks, Crowds and Markets de Kleinberg: http://www.cs.cornell.edu/home/kleinber/networks-book/
  • GDPR and Internet regulation
    • What are private data?
    • Impact Analysis

Impact Analysis: https://www.cnil.fr/sites/default/files/atoms/files/wp248_rev.01_fr.pdf

  • PIA context
  • PIA usage
    • Juridic document:
      • Data transformations, proportional security, risk analysis (Traitements envisagés, proportionnalité des opérations de traitement, analyse des risques)
      • DPO, DSO
    • Security techniques
      • https secure http, 0-knowledge
      • anomymous data
      • pseudo
      • access rights
      • views
    • Examples
      • Medical data (Hospital)
      • CCTV (video cameras)
      • Social Networks
      • Notation of individuals
      • Mailing lists
      • Advertising (Criteo)
      • Private data of a practioner
      • PIA of the site www.up2.fr
  • Goal: How to verify that GDPR is followed?
    • How to verify that a circuit has been copied? Marking circuits
    • How to verify that an image/video has been copied? Marking images and video
    • How to verify an Electronic vote?
    • How to verify in general: Randomness and Interaction
    • Automatic verification of RGPD: challenge
      • Not perfect, With high probability
      • Generate scenarios: keep track of all intermediate data
      • Proof that personal data were used, not erased,......
  • Internet regulation
    • ICANN
    • IETF
    • W3C
  • Algorithms and explanations
    • Responsability in case of a problem
    • Explanations of a classifier: Decision trees and Neural networks
    • Parcoursup